Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 18(3): 529-550, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37698780

RESUMO

Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1ß, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Sirtuína 2 , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/patologia , Camundongos Transgênicos , Sirtuína 2/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia
2.
Glia ; 70(2): 368-378, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726298

RESUMO

Alzheimer's disease (AD) is associated with senile plaques of beta-amyloid (Aß) that affect the function of neurons and astrocytes. Brain activity results from the coordinated function of neurons and astrocytes in astroglial-neuronal networks. However, the effects of Aß on astroglial and neuronal network function remains unknown. Simultaneously monitoring astrocyte calcium and electric neuronal activities, we quantified the impact of Aß on sensory-evoked cortical activity in a mouse model of AD. At rest, cortical astrocytes displayed spontaneous hyperactivity that was related to Aß density. Sensory-evoked astrocyte responsiveness was diminished in AD mice, depending on the density and distance of Aß, and the responses showed altered calcium dynamics. Hence, astrocytes were spontaneously hyperactive but hypo-responsive to sensory stimulation. Finally, AD mice showed sensory-evoked electrical cortical hyperresponsiveness associated with altered astrocyte-neuronal network interplay. Our findings suggest dysfunction of astrocyte networks in AD mice may dysregulate cortical electrical activity and contribute to cognitive decline.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/farmacologia , Animais , Astrócitos , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios , Placa Amiloide
3.
Neuroendocrinology ; 112(8): 796-806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34666336

RESUMO

INTRODUCTION: Parvalbumin (PV)-positive cells are strategic elements of neuronal networks capable of influencing memory and learning processes. However, it is not known whether pituitary hormones may be related to PV expression in the hippocampus - a part of the limbic system with important functions in learning and memory. OBJECTIVE: Since previous studies indicate that prolactin (PRL) plays a significant role in hippocampal-dependent learning and synaptic plasticity, we hypothesized that a rise in PRL levels can modify PV expression in the hippocampus. METHODS: We employed biochemical, immunohistochemistry, and densitometry techniques - as well as a behavioural assay - in a hyperprolactinemia model using subcutaneous osmotic pumps in female mice. RESULTS: PRL treatment via osmotic pump induced an increase in PRL receptor (PRLR) expression in most regions of the hippocampus analysed by Western blotting and immunohistochemistry methods. Fluorescent densitometry analysis revealed that PV expression decreases in the same layers in the hippocampus following PRL treatment, while double labelling immunostaining indicated close localization of PV and PRLR in PV-positive interneurons. In addition, we found that PRL induced a reduction in the ß2/3 subunit of GABAA receptor (GABAAR) expression that was linearly correlated with the reduction in PV expression. This reduction in the ß2/3 subunit of GABAAR expression was maintained in trained animals in which PRL treatment improved the learning of a spatial memory task. CONCLUSIONS: These data show, for the first time, that an increase in PRL level is associated with changes in key constituent elements of inhibitory circuits in the hippocampus and may be of relevance for the alterations in cognitive function reported in hyperprolactinemia.


Assuntos
Hipocampo , Hiperprolactinemia , Parvalbuminas , Prolactina , Receptores de GABA-A , Animais , Feminino , Hipocampo/metabolismo , Camundongos , Parvalbuminas/metabolismo , Prolactina/farmacologia , Receptores de GABA-A/metabolismo , Receptores da Prolactina/metabolismo
4.
Psychoneuroendocrinology ; 124: 105048, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249333

RESUMO

Beyond the direct physiological functions associated with motherhood in mammals, previous studies have suggested the potential role of prolactin (Prl) in distinct brain processes such as neuroprotection, neurogenesis, and stress responses. However, the cognitive influence of Prl remains unclear, particularly regarding the mechanisms of acquisition, consolidation and retrieval of information in the brain. Using chronic implanted electrodes in freely moving female mice combined with behavioral tests, we investigated the rhythmic activity changes induced by Prl in a model of hippocampus-dependent learning and memory. Our results show that Prl improves the learning of a spatial memory task in the acquisition stage. The main variations at the circuitry level were in the theta frequency band (4-8 Hz and 8-12 Hz), marked by a faster change in oscillatory activity with no modifications to higher frequencies. These results show that Prl plays a significant role in the acquisition of information during learning of a spatial memory task, suggesting that an increase in Prl levels may induce changes in circuital network plasticity.


Assuntos
Aprendizagem Espacial , Animais , Feminino , Hipocampo , Camundongos , Neurogênese , Prolactina
5.
Hippocampus ; 31(3): 281-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33285014

RESUMO

Dynamic signaling between the endocrine system (ES) and the nervous system (NS) is essential for brain and body homeostasis. In particular, reciprocal interaction occurs during pregnancy and motherhood that may involve changes in some brain plasticity processes. Prolactin (PRL), a hormone with pleiotropic effects on the NS, promotes maternal behavior and has been linked to modifications in brain circuits during motherhood; however, it is unclear whether PRL may regulate synaptic plasticity. Therefore, the main aim of the present work was to determine the cellular and molecular mechanisms triggered by PRL that regulate synaptic plasticity in the hippocampus. By analyzing extracellular recordings in CA3-CA1 synapses of hippocampal slices, we report that PRL modifies short and long-term synaptic plasticity in female mice of reproductive age, but not in sexually immature females or adult males. This effect is carried out through mechanisms that include participation of GABAA receptors and activation of the JAK2-mediated signaling pathway. These findings show for the first time how PRL enhances the synaptic strength in hippocampal circuits and that this effect is sexually dimorphic, which would influence complex brain processes in physiological conditions like pregnancy and lactation.


Assuntos
Plasticidade Neuronal , Prolactina , Animais , Feminino , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Receptores de GABA-A , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
6.
Mov Disord ; 35(9): 1636-1648, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666590

RESUMO

BACKGROUND: Numerous studies indicate an association between neurodegenerative and metabolic diseases. Although still a matter of debate, growing evidence from epidemiological and animal studies indicate that preexisting diabetes increases the risk to develop Parkinson's disease. However, the mechanisms of such an association are unknown. OBJECTIVES: We investigated whether diabetes alters striatal dopamine neurotransmission and assessed the vulnerability of nigrostriatal neurons to neurodegeneration. METHODS: We used streptozotocin-treated and genetically diabetic db/db mice. Expression of oxidative stress and nigrostriatal neuronal markers and levels of dopamine and its metabolites were monitored. Dopamine release and uptake were assessed using fast-scan cyclic voltammetry. 6-Hydroxydopamine was unilaterally injected into the striatum using stereotaxic surgery. Motor performance was scored using specific tests. RESULTS: Diabetes resulted in oxidative stress and decreased levels of dopamine and its metabolites in the striatum. Levels of proteins regulating dopamine release and uptake, including the dopamine transporter, the Girk2 potassium channel, the vesicular monoamine transporter 2, and the presynaptic vesicle protein synaptobrevin-2, were decreased in diabetic mice. Electrically evoked levels of extracellular dopamine in the striatum were enhanced, and altered dopamine uptake was observed. Striatal microinjections of a subthreshold dose of the neurotoxin 6-hydroxydopamine in diabetic mice, insufficient to cause motor alterations in nondiabetic animals, resulted in motor impairment, higher loss of striatal dopaminergic axons, and decreased neuronal cell bodies in the substantia nigra. CONCLUSIONS: Our results indicate that diabetes promotes striatal oxidative stress, alters dopamine neurotransmission, and increases vulnerability to neurodegenerative damage leading to motor impairment. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Diabetes Mellitus Experimental , Dopamina , Animais , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Substância Negra/metabolismo , Transmissão Sináptica
7.
Nat Commun ; 11(1): 3689, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704144

RESUMO

While neurons principally mediate brain function, astrocytes are emerging as cells with important neuromodulatory actions in brain physiology. In addition to homeostatic roles, astrocytes respond to neurotransmitters with calcium transients stimulating the release of gliotransmitters that regulate synaptic and neuronal functions. We investigated astrocyte-neuronal network interactions in vivo by combining two-photon microscopy to monitor astrocyte calcium and electrocorticogram to record neuronal network activity in the somatosensory cortex during sensory stimulation. We found astrocytes respond to sensory stimuli in a stimulus-dependent manner. Sensory stimuli elicit a surge of neuronal network activity in the gamma range (30-50 Hz) followed by a delayed astrocyte activity that dampens the steady-state gamma activity. This sensory-evoked gamma activity increase is enhanced in transgenic mice with impaired astrocyte calcium signaling and is decreased by pharmacogenetic stimulation of astrocytes. Therefore, cortical astrocytes respond to sensory inputs and regulate sensory-evoked neuronal network activity maximizing its dynamic range.


Assuntos
Astrócitos/metabolismo , Rede Nervosa/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Cálcio/metabolismo , Estimulação Elétrica , Feminino , Ritmo Gama/fisiologia , Masculino , Camundongos , Córtex Somatossensorial/citologia
8.
Neuron ; 105(6): 1036-1047.e5, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31954621

RESUMO

Dopamine is involved in physiological processes like learning and memory, motor control and reward, and pathological conditions such as Parkinson's disease and addiction. In contrast to the extensive studies on neurons, astrocyte involvement in dopaminergic signaling remains largely unknown. Using transgenic mice, optogenetics, and pharmacogenetics, we studied the role of astrocytes on the dopaminergic system. We show that in freely behaving mice, astrocytes in the nucleus accumbens (NAc), a key reward center in the brain, respond with Ca2+ elevations to synaptically released dopamine, a phenomenon enhanced by amphetamine. In brain slices, synaptically released dopamine increases astrocyte Ca2+, stimulates ATP/adenosine release, and depresses excitatory synaptic transmission through activation of presynaptic A1 receptors. Amphetamine depresses neurotransmission through stimulation of astrocytes and the consequent A1 receptor activation. Furthermore, astrocytes modulate the acute behavioral psychomotor effects of amphetamine. Therefore, astrocytes mediate the dopamine- and amphetamine-induced synaptic regulation, revealing a novel cellular pathway in the brain reward system.


Assuntos
Astrócitos/fisiologia , Dopamina/fisiologia , Núcleo Accumbens/fisiologia , Transmissão Sináptica/fisiologia , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Anfetamina/farmacologia , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Atividade Motora/fisiologia , Optogenética , Receptores de Dopamina D1/genética , Recompensa
9.
Exp Neurol ; 323: 113095, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31712124

RESUMO

Currently, molecular, electrophysiological and structural studies delineate several neural subtypes in the hippocampus. However, the precise developmental mechanisms that lead to this diversity are still unknown. Here we show that alterations in a concrete hippocampal neuronal subpopulation during development specifically affect hippocampal-dependent spatial memory. We observed that the genetic deletion of the transcription factor Helios in mice, which is specifically expressed in developing hippocampal calbindin-positive CA1 pyramidal neurons (CB-CA1-PNs), induces adult alterations affecting spatial memory. In the same mice, CA3-CA1 synaptic plasticity and spine density and morphology in adult CB-CA1-PNs were severely compromised. RNAseq experiments in developing hippocampus identified an aberrant increase on the Visinin-like protein 1 (VSNL1) expression in the hippocampi devoid of Helios. This aberrant increase on VSNL1 levels was localized in the CB-CA1-PNs. Normalization of VSNL1 levels in CB-CA1-PNs devoid of Helios rescued their spine loss in vitro. Our study identifies a novel and specific developmental molecular pathway involved in the maturation and function of a CA1 pyramidal neuronal subtype.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurocalcina/metabolismo , Neurogênese/fisiologia , Células Piramidais/fisiologia , Memória Espacial/fisiologia , Fatores de Transcrição/metabolismo , Animais , Região CA1 Hipocampal/crescimento & desenvolvimento , Região CA1 Hipocampal/fisiologia , Espinhas Dendríticas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Células Piramidais/citologia
10.
Mol Neurobiol ; 56(2): 1475-1487, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948948

RESUMO

Striatal-enriched protein tyrosine phosphatase (STEP) modulates key signaling molecules involved in synaptic plasticity and neuronal function. It is postulated that STEP opposes the development of long-term potentiation (LTP) and that it exerts a restraint on long-term memory (LTM). Here, we examined whether STEP61 levels are regulated during hippocampal LTP and after training in hippocampal-dependent tasks. We found that after inducing LTP by high frequency stimulation or theta-burst stimulation STEP61 levels were significantly reduced, with a concomitant increase of STEP33 levels, a product of calpain cleavage. Importantly, inhibition of STEP with TC-2153 improved LTP in hippocampal slices. Moreover, we observed that after training in the passive avoidance and the T-maze spontaneous alternation task, hippocampal STEP61 levels were significantly reduced, but STEP33 levels were unchanged. Yet, hippocampal BDNF content and TrkB levels were increased in trained mice, and it is known that BDNF promotes STEP degradation through the proteasome. Accordingly, hippocampal pTrkBTyr816, pPLCγTyr783, and protein ubiquitination levels were increased in T-SAT trained mice. Remarkably, injection of the TrkB antagonist ANA-12 (2 mg/Kg, but not 0.5 mg/Kg) elicited LTM deficits and promoted STEP61 accumulation in the hippocampus. Also, STEP knockout mice outperformed wild-type animals in an age- and test-dependent manner. Summarizing, STEP61 undergoes proteolytic degradation in conditions leading to synaptic strengthening and memory formation, thus highlighting its role as a molecular constrain, which is removed to enable the activation of pathways important for plasticity processes.


Assuntos
Hipocampo/metabolismo , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Memória/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteólise , Ubiquitinação/fisiologia
11.
Nat Neurosci ; 20(11): 1540-1548, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945222

RESUMO

The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.


Assuntos
Tonsila do Cerebelo/fisiologia , Astrócitos/fisiologia , Medo/fisiologia , Aprendizagem em Labirinto/fisiologia , Rede Nervosa/fisiologia , Sinapses/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Medo/efeitos dos fármacos , Medo/psicologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptor A2A de Adenosina/fisiologia , Sinapses/efeitos dos fármacos
12.
Diabetes ; 66(1): 64-74, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27999108

RESUMO

Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Animais , Transporte Biológico/fisiologia , Transportador de Glucose Tipo 1/metabolismo , Glicogênio/metabolismo , Imunoensaio , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Plasmídeos , Reação em Cadeia da Polimerase , Tomografia por Emissão de Pósitrons
13.
Addict Biol ; 22(6): 1706-1718, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27457910

RESUMO

Caffeine has cognitive-enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor-independent form of LTP (CAF LTP) in the CA1 region of the hippocampus by promoting calcium-dependent secretion of BDNF, which subsequently activates TrkB-mediated signaling required for the expression of CAF LTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAF LTP, a process that requires cytosolic free Ca2+ . Consistent with the involvement of IRS2 signals in caffeine-mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2-/- mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3-kinase (PI3K) pathway. These findings indicate that TrkB-IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Feminino , Proteínas Substratos do Receptor de Insulina/efeitos dos fármacos , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Camundongos , Modelos Animais
14.
Elife ; 52016 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-28012274

RESUMO

Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.


Assuntos
Astrócitos/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , GABAérgicos/metabolismo , Hipocampo/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Animais , Camundongos Knockout , Rede Nervosa , Redes Neurais de Computação , Técnicas de Patch-Clamp , Receptores de GABA-A , Receptores de GABA-B , Receptores de Glutamato Metabotrópico/metabolismo
15.
Glia ; 64(11): 1962-71, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27462832

RESUMO

Previous findings indicate that reducing brain insulin-like growth factor I receptor (IGF-IR) activity promotes ample neuroprotection. We now examined a possible action of IGF-IR on brain glucose transport to explain its wide protective activity, as energy availability is crucial for healthy tissue function. Using (18) FGlucose PET we found that shRNA interference of IGF-IR in mouse somatosensory cortex significantly increased glucose uptake upon sensory stimulation. In vivo microscopy using astrocyte specific staining showed that after IGF-IR shRNA injection in somatosensory cortex, astrocytes displayed greater increases in glucose uptake as compared to astrocytes in the scramble-injected side. Further, mice with the IGF-IR knock down in astrocytes showed increased glucose uptake in somatosensory cortex upon sensory stimulation. Analysis of underlying mechanisms indicated that IGF-IR interacts with glucose transporter 1 (GLUT1), the main facilitative glucose transporter in astrocytes, through a mechanism involving interactions with the scaffolding protein GIPC and the multicargo transporter LRP1 to retain GLUT1 inside the cell. These findings identify IGF-IR as a key modulator of brain glucose metabolism through its inhibitory action on astrocytic GLUT1 activity. GLIA 2016;64:1962-1971.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Animais Recém-Nascidos , Biotinilação , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Células Cultivadas , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glucosamina/análogos & derivados , Glucosamina/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator de Crescimento Insulin-Like I/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Física , Transporte Proteico/genética , RNA Mensageiro/metabolismo , Transfecção , Vibrissas/fisiologia
16.
Biomaterials ; 82: 84-93, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26751821

RESUMO

Graphene and graphene-based nanomaterials (GBNs) are being investigated as potential substrates for the growth of neural stem cells (NSCs), neurons and glia in cell culture models. In contrast, reports testing the effects of graphene directly with adult neural cells in vivo are missing. Here we studied the biocompatibility of thermally reduced graphene (TRG) with neurons and glia, as well as with the generation of new neurons in the adult brain in vivo. TRG injected in the brain together with a retroviral vector expressing GFP to label dividing progenitor cells in the core of the adult olfactory bulb (OB) did not alter de novo neurogenesis, neuronal and astrocyte survival nor did it produce a microglial response. These findings indicate that TRG may be a biocompatible material with neuronal and glial cells in vivo and support its use in studies of brain repair and function.


Assuntos
Astrócitos/fisiologia , Grafite/química , Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Tecidos Suporte , Animais , Astrócitos/citologia , Materiais Biocompatíveis/síntese química , Desenho de Equipamento , Análise de Falha de Equipamento , Grafite/toxicidade , Regeneração Tecidual Guiada/instrumentação , Temperatura Alta , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Bulbo Olfatório/citologia , Oxirredução
17.
Hum Mol Genet ; 24(25): 7265-85, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26464483

RESUMO

Cognitive dysfunction is an early clinical hallmark of Huntington's disease (HD) preceding the appearance of motor symptoms by several years. Neuronal dysfunction and altered corticostriatal connectivity have been postulated to be fundamental to explain these early disturbances. However, no treatments to attenuate cognitive changes have been successful: the reason may rely on the idea that the temporal sequence of pathological changes is as critical as the changes per se when new therapies are in development. To this aim, it becomes critical to use HD mouse models in which cognitive impairments appear prior to motor symptoms. In this study, we demonstrate procedural memory and motor learning deficits in two different HD mice and at ages preceding motor disturbances. These impairments are associated with altered corticostriatal long-term potentiation (LTP) and specific reduction of dendritic spine density and postsynaptic density (PSD)-95 and spinophilin-positive clusters in the cortex of HD mice. As a potential mechanism, we described an early decrease of Kalirin-7 (Kal7), a guanine-nucleotide exchange factor for Rho-like small GTPases critical to maintain excitatory synapse, in the cortex of HD mice. Supporting a role for Kal7 in HD synaptic deficits, exogenous expression of Kal7 restores the reduction of excitatory synapses in HD cortical cultures. Altogether, our results suggest that cortical dysfunction precedes striatal disturbances in HD and underlie early corticostriatal LTP and cognitive defects. Moreover, we identified diminished Kal7 as a key contributor to HD cortical alterations, placing Kal7 as a molecular target for future therapies aimed to restore corticostriatal function in HD.


Assuntos
Corpo Estriado/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Doença de Huntington/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Eletrofisiologia , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Confocal , Transmissão Sináptica/genética
18.
J Clin Invest ; 124(10): 4411-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25180603

RESUMO

Learning and memory deficits are early clinical manifestations of Huntington's disease (HD). These cognitive impairments have been mainly associated with frontostriatal HD pathology; however, compelling evidence provided by several HD murine models suggests that the hippocampus may contribute to synaptic deficits and memory dysfunction in HD. The neurotrophin receptor p75(NTR) negatively regulates spine density, which is associated with learning and memory; therefore, we explored whether disturbed p75(NTR) function in the hippocampus could contribute to synaptic dysfunction and memory deficits in HD. Here, we determined that levels of p75(NTR) are markedly increased in the hippocampus of 2 distinct mouse models of HD and in HD patients. Normalization of p75(NTR) levels in HD mutant mice heterozygous for p75(NTR) prevented memory and synaptic plasticity deficits and ameliorated dendritic spine abnormalities, likely through normalization of the activity of the GTPase RhoA. Moreover, viral-mediated overexpression of p75(NTR) in the hippocampus of WT mice reproduced HD learning and memory deficits, while knockdown of p75(NTR) in the hippocampus of HD mice prevented cognitive decline. Together, these findings provide evidence of hippocampus-associated memory deficits in HD and demonstrate that p75(NTR) mediates synaptic, learning, and memory dysfunction in HD.


Assuntos
Doença de Huntington/genética , Transtornos da Memória/genética , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/fisiologia , Sinapses/patologia , Animais , Astrócitos/citologia , Células Cultivadas , Eletrofisiologia , Técnicas de Introdução de Genes , Heterozigoto , Hipocampo/metabolismo , Humanos , Doença de Huntington/fisiopatologia , Aprendizagem , Masculino , Memória , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo
19.
J Neurosci ; 34(38): 12738-44, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232111

RESUMO

Experience-dependent plasticity of synaptic transmission, which represents the cellular basis of learning, is accompanied by morphological changes in dendritic spines. Astrocytic processes are intimately associated with synapses, structurally enwrapping and functionally interacting with dendritic spines and synaptic terminals by responding to neurotransmitters and by releasing gliotransmitters that regulate synaptic function. While studies on structural synaptic plasticity have focused on neuronal elements, the structural-functional plasticity of astrocyte-neuron relationships remains poorly known. Here we show that stimuli inducing hippocampal synaptic LTP enhance the motility of synapse-associated astrocytic processes. This motility increase is relatively rapid, starting <5 min after the stimulus, and reaching a maximum in 20-30 min (t(1/2) = 10.7 min). It depends on presynaptic activity and requires G-protein-mediated Ca(2+) elevations in astrocytes. The structural remodeling is accompanied by changes in the ability of astrocytes to regulate synaptic transmission. Sensory stimuli that increase astrocyte Ca(2+) also induce similar plasticity in mouse somatosensory cortex in vivo. Therefore, structural relationships between astrocytic processes and dendritic spines undergo activity-dependent changes with metaplasticity consequences on synaptic regulation. These results reveal novel forms of synaptic plasticity based on structural-functional changes of astrocyte-neuron interactions.


Assuntos
Astrócitos/fisiologia , Espinhas Dendríticas/fisiologia , Plasticidade Neuronal/fisiologia , Potenciais de Ação/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cálcio/metabolismo , Feminino , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Córtex Somatossensorial/fisiologia , Transmissão Sináptica/fisiologia
20.
Mol Neurobiol ; 49(2): 784-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24198227

RESUMO

In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/metabolismo , Transtornos da Memória/metabolismo , Transtornos das Habilidades Motoras/metabolismo , Receptores de Prostaglandina E Subtipo EP1/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Animais , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Hidrazinas/administração & dosagem , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Transtornos das Habilidades Motoras/tratamento farmacológico , Transtornos das Habilidades Motoras/genética , Oxazepinas/administração & dosagem , Receptores de Prostaglandina E Subtipo EP1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...